Improved a priori error estimates for a discontinuous Galerkin pressure correction scheme for the Navier–Stokes equations
نویسندگان
چکیده
The pressure correction scheme is combined with interior penalty discontinuous Galerkin method to solve the time-dependent Navier–Stokes equations. Optimal error estimates are derived for velocity in L2 norm time and space. Error bounds discrete derivative of also established. analysis challenging technical based on appropriate use lift operators duality arguments.
منابع مشابه
Error Estimates for the Discontinuous Galerkin Methods for Parabolic Equations
We analyze the classical discontinuous Galerkin method for a general parabolic equation. Symmetric error estimates for schemes of arbitrary order are presented. The ideas we develop allow us to relax many assumptions freqently required in previous work. For example, we allow different discrete spaces to be used at each time step and do not require the spatial operator to be self adjoint or inde...
متن کاملA Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods
In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...
متن کاملA Priori Error Estimates for Semi-discrete Discontinuous Galerkin Methods Solving Nonlinear Hamilton-jacobi Equations with Smooth Solutions
The Hamiltonian H is assumed to be a smooth function of all the arguments. When there is no ambiguity, we also take the concise notation H(φx) = H(φx, x) and H(φx, φy) = H(φx, φy, x, y). The DG method is a class of finite element methods using completely discontinuous piecewise polynomial space for the numerical solution in the spatial variables. It can be discretized in time by the explicit an...
متن کاملA Priori L Error Estimates for Galerkin Approximations to Porous Medium and Fast Diffusion Equations
Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equation
متن کاملAnalysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations
Article history: Received 23 April 2015 Received in revised form 3 February 2016 Accepted 31 March 2016 Available online xxxx I would like to dedicate this work to my Father, Ahmed Baccouch, who unfortunately passed away during the completion of this work
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Methods for Partial Differential Equations
سال: 2023
ISSN: ['1098-2426', '0749-159X']
DOI: https://doi.org/10.1002/num.23002